Computational approaches for modeling regulatory cellular networks.
نویسندگان
چکیده
Cellular components interact with each other to form networks that process information and evoke biological responses. A deep understanding of the behavior of these networks requires the development and analysis of mathematical models. In this article, different types of mathematical representations for modeling signaling networks are described, and the advantages and disadvantages of each type are discussed. Two experimentally well-studied signaling networks are then used as examples to illustrate the insight that could be gained through modeling. Finally, the modeling approach is expanded to describe how signaling networks might regulate cellular machines and evoke phenotypic behaviors.
منابع مشابه
Comparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks
The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...
متن کاملStudy of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملModeling gene regulatory networks: Classical models, optimal perturbation for identification of network
Deep understanding of molecular biology has allowed emergence of new technologies like DNA decryption. On the other hand, advancements of molecular biology have made manipulation of genetic systems simpler than ever; this promises extraordinary progress in biological, medical and biotechnological applications. This is not an unrealistic goal since genes which are regulated by gene regulatory ...
متن کاملFrom Boolean to Probabilistic Boolean Networks as Models of Genetic Regulatory Networks
Mathematical and computational modeling of genetic regulatory networks promises to uncover the fundamental principles governing biological systems in an integrative and holistic manner. It also paves the way toward the development of systematic approaches for effective therapeutic intervention in disease. The central theme in this paper is the Boolean formalism as a building block for modeling ...
متن کاملData Sources and Computational Approaches for Generating Models of Gene Regulatory Networks
OUTLINE Introduction Formal representation of GRNs An example of a GRN: The Lac Operon Hierarchies of GRN models: From probabilistic graphs to mechanistic models A guide to databases and knowledgebases on the internet Pathway Databases & Platforms Ontologies for GRN modeling Current Gene, Interaction, and Pathway Ontologies Wholecell modeling platforms Ontology for modeling multiscale and inc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in cell biology
دوره 14 12 شماره
صفحات -
تاریخ انتشار 2004